
A Parallel Decoding Algorithm of LDPC Codes
using CUDA

Shuang Wang and Samuel Cheng

School of Electrical and Computer Engineering

University of Oklahoma-Tulsa

Tulsa, OK 74135

{shuangwang, samuel.cheng}@ou.edu

Qiang Wu

Soft Imaging, LLC

17000 El Camino Real

Houston, TX 77062

qiang.wu@softimagingllc.com

Abstract—A parallel belief propagation algorithm for decoding

low-density parity-check (LDPC) Codes is presented in this paper

based on Compute Unified Device Architecture (CUDA). As a new

hardware and software architecture for addressing and managing

computations, CUDA offers parallel data computing using the

highly multithreaded coprocessor driven by very high memory

bandwidth GPU. The parallel decoding algorithm, based on

CUDA, allows that all bit-nodes or check-nodes work

simultaneously, thus provides an efficient and fast way for

implementing the decoder.

1. INTRODUCTION

Low-density parity-check (LDPC) code, as an error

correcting code (ECC), was first invented by Gallager in 1960

[1][2]. However, researchers did not pay much attention on this

kind of codes during the next several decades for the limited

ability of computation. Until Mackay and Neal revived it in

1996 [3], LDPC code has rapidly become a popular research

topic in telecommunication, because it offers remarkable

performance to allow data transmission rates close to the

Shannon Limit [4]. In 2003 LDPC code becomes the ECC in

the Digital Video Broadcasting (DVB) standard and is also the

prevailing competition in the 4
th
 generation of mobile

communication system.

LDPC codes are defined by a sparse parity-check matrix. The

belief propagation algorithm is a powerful iterative algorithm

for decoding the LDPC codes [1]-[3]. During decoding, the

probability of each bit of a transmitted codeword being 1 is

computed and sent between bit-nodes (representing the

codeword bits) and check-nodes (representing the parity

constraints). The time complexity of this algorithm increases

linearly with the size of parity- check matrix.

Several parallel methods for decoding LDPC codes have

been study in recent years [5]-[7]. A parallel architecture for

decoding LDPC codes was studied by C. Howland and A.

Blaiiksby. In their paper, a prototype soft decision decoder was

implemented based on a 1024 bit, rate-1/2 LDPC code [5].

Shimizu et al. implemented a parallel LDPC decoder on an

FPGA and simulated its decoding performance [6]. Daesun et al.

presented an efficient highly-parallel decoder architecture using

partially overlapped decoding scheme for quasi-cyclic (QC)

LDPC codes, which leads to reduction in hardware

complexity and power consumption [7]. However, most of

these parallel decoding methods designed at the hardware

level, thus decoding different codes may require complete

changes of hardware architectures. As one of high

performance computing platforms, the graphics processor

Unit (GPU) offers highly parallel computation, very high

memory bandwidth, and a flexible programmable

environment. Thus, we can use GPUs to design a parallel

decoder for any LDPC code efficiently.

In just a few years, GPUs have evolved into flexible

platforms for general computing [9]. Initially, GPUs were

programmed by low-level languages [10] which restricted

its application as computing workhorses. The release of Cg,

a high-level programming language for GPU, facilitated the

application of GPU for a general purpose computation [11].

However, Cg is not user-friendly enough, because it

requested programmers must have fundamental knowledge

on computer graphics for using this high-level programming

language. Until recently, NVIDIA releases the Compute

Unified Device Architecture (CUDA) [9], programmers can

write codes for both CPU and GPU in a similar way by

using the instruction set of CUDA [12].

In this paper, we propose a parallel belief propagation

algorithm for decoding LDPC Codes by using NVIDIA

CUDA programming model. We show how the parallelism

naturally appeared during message-passing between

bit-nodes and check-nodes can be exploited using the

CUDA model. A significant increase of performance is

observed when the dimension of parity-check matrix is

reasonably large.

This paper is organized as follows. Section 2 presents the

basic concept of LDPC codes. In Section 3, the classic

belief propagation algorithm for LDPC codes is reviewed.

Section 4 describes the parallel belief propagation algorithm

based on CUDA. Finally, section 5 and 6 present the

performance results and concluding remarks.

2. LOW DENSITY PARITY CHECK CODES

 A LDPC codes can be defined by an NM × sparse

parity-check matrix H , where M and N represent the

numbers of check-nodes and bit-nodes respectively. H is

sparse in the sense that the numbers of 1’s in each row and in

each column must far less than the numbers of rows and

columns, respectively. Any codeword of a LDPC code

()NxxxX ...,, 21= must satisfy (1).

A Tanner graph as shown in Fig. 1 is an intuitive way to

represent a LDPC code. A bit node j , corresponding to

column j in H is connected to a check node ic ,

corresponding to row i in H , if 1),(=jiH .

0=⋅ TXH (1)

3. THE BELIEF PROPAGATION ALGORITHM

As a subclass of message passing algorithms, a belief

propagation (BP) algorithm for decoding LDPC codes was first

presented in Gallager’s work [2]. The essence of the BP

algorithm is that the probabilities of bit nodes being 1 are

exchanged between connected check nodes and bit nodes

during each iteration cycle. The BP algorithm can be

summarized as follows [13] and is shown in Fig. 1.

1. Denote jy as the received bit at bit node j . A bit node

j computes and sends the prior probabilities (beliefs) of jx

to be 1 ()1(jiq) and 0 ()0(jiq) according to the observed jy .

2. A check node i computes the probabilities of jx to be

1 (()1ijr) and 0 (()0ijr) according to (2) and (3):

() ()()
() 


















−+= ∏
≠

∈
=

jk
Nk

kiH

kiij qr

,0
1),(

1211
2

1
0 , (2)

() ()011 ijij rr −= (3)

These probabilities are then forwarded to the bit node j .

3. The probabilities ()0jiq and ()1jiq of bit node j are

updated according to the follows,

 () () ()()
()

∏
≠

∈
=

−=

il
Ml
jlH

ljjjiji rPKq

,0
1),(

,010 (4)

2x1x 3x 4x 5x 6x 7x

0641 =++ xxx 07542 =+++ xxxx 07653 =+++ xxxx

1c 2c 3c

)(11 bq

)(11 br

Fig. 1. Graphical representation for LDPC code and probability

propagation.

() ()
()

∏
≠

∈
=

=

il
Ml
jlH

ljjjiji rPKq

,0
1),(

,11 (5)

where jiK are constants to ensure that

() () 110 =+ jiji qq .

Finally, a new estimation jx̂ of bit node j are

updated by using (6).

() ()



 >

=
otherwise

QQif
x

jj

j
0

011
ˆ , (6)

where ()bQ j are defined as follows

 () () ()
()
()

∏
∈

=

−=

Mi
jiH

ijjjj rPKQ

,0
1,

,010 (7)

() ()
()
()

∏
∈

=

=

Mi
jiH

ijjjj rPKQ

,0
1,

11 , (8)

where jK are constants to ensure that

() () 110 =+ jj QQ .

If the current estimate of the codeword

{ }NxxxX ˆ...ˆ,ˆˆ
21= satisfies (1), the algorithm stops and

outputs the estimated codeword X̂ . Otherwise, go to step

2 unless the maximum number of iterations is reached.

The algorithm described above can be optimized by using

log-domain to replace multiplications by additions.

4. CUDA IMPLEMENT OF PARALLEL BELIEF PROPAGATION

ALGORITHM

4.1 General Framework of CUDA

CUDA is a new hardware and software architecture for

parallel computing on GPU, which serves as a general

computing device bypassing the need of direct access to

low-level graphics API. When programmed through CUDA, the

GPU is viewed as a computing device capable of executing a

very high number of threads in parallel. It operates as a

coprocessor to the main CPU (host), which means data-parallel,

compute-intensive portions of applications running on the host

are off-loaded onto the GPU (device). Both the host and device

maintain their own DRAM, referred to as host-memory and

device memory, respectively. One can copy data from host to

device and vice versa through optimized API calls that utilize the

device’s high-performance direct memory access engines [9].

The batch of threads that executes a kernel is organized as a

grid of thread blocks as illustrated in Fig. 2. A batch of threads

can cooperate by sharing data through the fast shared memory

(K16) and synchronizing executions efficiently. Each thread is

identified by its thread ID in each block, and each block is

identified by its block ID in each grid. The thread ID is

arranged sequentially. For example, the thread ID of a thread

with index).,.,.(ztdytdxtd in a three dimensional block of

size),,(zyx DDD is)...(yxx DzDtdyDtdxtd ++ .

Similarly, for a two-dimensional block of size),(yx DD , the

block ID of a block of index),,.(ybkxbk is

),.(xyDbkxbk + [9].

A grid of thread blocks is executed on device by scheduling

blocks for execution on the multiprocessors. The number of

blocks that each multiprocessor can process in one batch

depends on the property of the device [9].

Device memory can be sorted as read-write per-thread registers,

read-write per-thread local memory, read-write per-block shared

memory, read-write per-grid global memory, read-only per-grid

constant memory and read-only per-grid texture memory. Since

the shared memory is embedded on the multiprocessor, it

provides a very fast read and write access for threads.

4.2 Parallel decoding on CUDA

In our CUDA implementation of the BP algorithm, a thread is

assigned to either a bit node or a check node. The workflow of

the algorithm is illustrated in Fig. 4 and is summarized as

follows:

1. Copy the data required for GPU computation from host

memory in CPU to global memory in GPU, so that all threads

can access the data in the global memory. These data include a

structure array S containing probabilities ()1jiq and ()1ijr ,

two mapping arrays indicating the positions where bit node

j and check node i can access ()1jiq and ()1ijr in

structure array S, and one array for storing the codeword.

Fig. 2. Thread batching: the host issues a succession of kernel invocations

to the device. Each kernel is executed as a batch of threads organized as a

grid of thread blocks [9].

2. Initialize probabilities ()bq ji in parallel using GPU.

The algorithm initializes the probabilities according to the

order as shown in Fig. 3 (b). Each thread is assigned to a

bit node j and calculates all probabilities ()1jiq with

the help of the mapping arrays. For instance, for a binary

symmetric channel (BSC) with error probability p, the

probability ()1jiq is p−1 if the received jy is 1 and

() pq ji =1 otherwise.

3. Compute current estimated codeword. Following the

order as shown in Fig. 3 (b), N threads are assigned to

compute the codeword. If the estimated codeword satisfies

(1), go to step 6. Otherwise, proceed to the step 4.

4. Compute and exchange bit node and check node

probabilities

4.1 Calculate probabilities)(brij at check nodes in

the order as shown in Fig. 3(c). A thread is

responsible for a particular check node i , and

calculates all respective probabilities)(brij .

Moreover, the shared memory on device is used to

accelerate the massive number of multiplications in

(2).

4.2 Update the probabilities ()bq ji at bit nodes and

estimate ix̂ using ()bQ j as computed in (7)

and (8). The basic idea is the same as step 4.1

except each bit node is assigned to one thread. All

threads run and calculate probabilities ()bq ji and

()bQ j simultaneously.

5. If doesn’t reach the maximum iterations, go to step 3.

Otherwise, stop.

6. Output codewords. The decoded codewords are copied

from the global memory back to the host memory.

Fig. 3. Schematic figures of a computational block. Fig. 3(a) shows the parity

check matrix of Fig. 1. Fig. 3(b) illustrates the parallel computation of bit node,

while the parallel computation of check-nodes is shown in Fig. 3(c). In Fig. 3(a)

and Fig. 3(b), the numbers indicate the position of 1’s in the corresponding

parity-check matrix.

)(bq ji

)(brij

)(bq ji

)(bQ j

Fig. 4. The workflow for decoding LDPC codes with CUDA, where the kernel

modules means the program executed on GPU

5. PERFORMANCE RESULTS

In this section, we present the performance results of parallel

BP algorithm for decoding LDPC codes based on CUDA. The

experiment is performed under an Intel Core Duo 1.6 GHz PC

with 2 GB 667MHz DDR2 Memory, and a GPU NVIDIA

8800GT with 512 MB memory installed. The specifications of

software are CUDA Toolkit 1.1, CUDA SDK 1.1 and CUDA

Driver 169.21 (for Windows XP). In our simulation, 100

different codewords are employed to test performances of C++

codes on CPU and CUDA codes on GPU in decoding LDPC

codes. The average iterations used in this paper are defined as

divide total iterations for decoding all the codes by the

number of codes.

Table I and table II show the decoding performance for

code with different parity check matrices. In Table I and II,

the sizes of parity check matrix are 40962048× and

20481024× respectively. For each size, the matrices

with 9, 6 and 3 check nodes per row are used for simulation.

A significant gain in performance of GPU versus CPU is

observed. Moreover, for a given parity check matrix in table

I and II, the decoding times are shorter, when larger block

sizes are used.

Fig. 5 shows the speedup GPU vs. CPU for three different

matrices by using 64 threads per block. In Fig. 5, the

speedups increase as the size of check matrix increases for a

given number of nodes per row, while the speedups decrease

as the number of nodes per row decreases for a given parity

check matrix. We can also see that GPU using CUDA is 9

times faster than CPU at the size of 40962048× with 9

nodes per row.

The average running time in this paper is defined as

()ANTt ⋅= , where T is running time of GPU or CPU,

N is the number of codes and A is the average

iterations. Fig. 6 shows the average running time for four

different matrices with 6 nodes per row by using 64 threads

per block. With increase of the matrices size, we can see that

the increase of running time for GPU is linear with a small

slope, while the increase for CPU is rapidly. However, as

shown in Fig. 6, for small code size such as 256 , the

performance of GPU is almost the same as CPU. The

explanation for this “low” performance is that the GPU

needs 400 to 600 clock cycles to read a float number from

global memory. However, if there are sufficient independent

arithmetic instructions that can be issued while the GPU is

waiting for the global memory access, much of this global

memory latency can be hidden by the thread scheduler. This

fact also verified that CUDA is more suitable for

compute-intensive, highly parallel computation [9].

6. CONCLUSION

This paper proposed a parallel BP algorithm for decoding

LDPC codes based on CUDA. CUDA is a new architecture

for high-performance computation by using massively

multi-threaded GPU with high memory bandwidth. For the

decoding of LDPC codes, CUDA offers a highly parallel

architecture and significant increase of performance in

contrast with traditional computation on CPU. With CUDA,

we do not need specific hardware design knowledge to

accomplish parallel decoding for LDPC codes. Finally, we

conclude that GPU based parallel programming is a very

efficient way for the intensive decoding of LDPC codes.

512 1024 2048
0

2

4

6

8

10

Number of Rows in parity check matrix

S
p
e
e
d
u
p
 G

P
U

 v
s
 C

P
U

9 nodes per row

6 nodes per row

3 nodes per row

Fig. 5. Speedup GPU versus CPU for three different matrices by using 64

threads per block.

0 256 512 1024 2048
0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 R

u
n
in

g
 T

im
e
(m

s
)

Number of Rows in parity check matrix

CPU Runing Time

GPU Running Time

Fig. 6. Average running time for four different matrices with 6 nodes per row

by using 64 threads per block.

TABLE I

DECODING PERFORMANCE FOR CODE WITH PARITY CHECK MATRIX SIZE OF 2048 BY 4096

GPU running time for

different block sizes (ms)

Nodes

per

Row

Number

of

Edges

CPU

running

Time (ms) 8 16 32 64

Average

Iterations

9 18432 10002 1517 1444 1138 1113 11.9

6 12288 3059 621 549 528 518 4.8

3 6144 1328 467 432 414 415 5.8

TABLE II.

DECODING PERFORMANCE FOR CODE WITH PARITY CHECK MATRIX SIZE OF 1024 BY 2048

GPU running time for

different block sizes (ms)

Nodes

per

Row

Number

of

Edges

CPU

running

Time (ms) 8 16 32 64

Average

Iterations

9 9216 3428 966 899 894 693 10.7

6 6144 764 360 334 321 307 4.6

3 3072 513 303 285 257 256 5.2

REFERENCES

[1] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inform.

Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[2] R. G. Gallager, “Low-Density Parity-Check Codes,” MIT Press,

Cambridge, MA, 1963.

[3] D. J. C. MacKay and Radford M. Neal, Near “Shannon Limit

Performance of Low Density Parity Check Codes”, Electronics Letters,

vol. 32, pp. 1645-1646, July 1996.

[4] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and

the sum-product algorithm”, IEEE Transactions on Information Theory,

vol. 47, pp. 498-519, Feb 2001.

[5] C. Howland, A. Blanksby, “Parallel decoding architectures for low

density parity check codes”, The 2001 IEEE International Symposium

on Circuits and Systems, 2001. ISCAS 2001. vol. 4, pp. 742 – 745,

May 2001

[6] K. Shimizu, T. Ishikawa, et al, “A parallel LSI architecture for LDPC

decoder improving message-passing schedule”, Proceedings. 2006

IEEE International Symposium on Circuits and Systems, 2006. ISCAS

2006. pp. 5099-5102, May 2006

[7] Oh. Daesun, K.K Parhi, “Efficient Highly-Parallel Decoder

Architecture for Quasi-Cyclic Low-Density Parity-Check Codes”,

IEEE International Symposium on Circuits and Systems, 2007. ISCAS

2007. pp. 1855 – 1858, May 2007.

[8] Nyland, Lars, Mark Harris, and Jan Prins. 2004. “The Rapid Evaluation

of Potential Fields Using Programmable Graphics Hardware.” Poster

presentation at GP2, the ACM Workshop on General Purpose

Computing on Graphics Hardware.

[9] NVIDIA Corporation. 2007. NVIDIA CUDA Compute Unified Device

Architecture Programming Guide. Version 1.1. http://www.nvidia.com/

object/cuda_develop.html

[10] P. Warden. Pete’s GPU Notes, 2005.

http://petewarden.com/notes/archives/ 2005/05/

[11] William R. Mark, R. Steven Glanville, Kurt Akeley, Mark J. Kilgard,

“Cg: A System for Programming Graphics Hardware in a C-like

Language”, Proceedings of SIGGRAPH 2003.

[12] Shams, Ramtin; Barnes, Nick, “Speeding up Mutual Information

Computation Using NVIDIA CUDA Hardware” 9th Biennial

Conference of the Australian Pattern Recognition Society on Digital

Image Computing Techniques and Applications, pp. 555–560, Dec.

2007

[13] M.J. Bernhard “LDPC Codes – a brief Tutorial”,

http://users.tkk.fi/~pat/ coding/essays/ ldpc.pdf

