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Abstract—A parallel belief propagation algorithm for decoding 

low-density parity-check (LDPC) Codes is presented in this paper 

based on Compute Unified Device Architecture (CUDA). As a new 

hardware and software architecture for addressing and managing 

computations, CUDA offers parallel data computing using the 

highly multithreaded coprocessor driven by very high memory 

bandwidth GPU. The parallel decoding algorithm, based on 

CUDA, allows that all bit-nodes or check-nodes work 

simultaneously, thus provides an efficient and fast way for 

implementing the decoder. 

1. INTRODUCTION 

Low-density parity-check (LDPC) code, as an error 

correcting code (ECC), was first invented by Gallager in 1960 

[1][2]. However, researchers did not pay much attention on this 

kind of codes during the next several decades for the limited 

ability of computation. Until Mackay and Neal revived it in 

1996 [3], LDPC code has rapidly become a popular research 

topic in telecommunication, because it offers remarkable 

performance to allow data transmission rates close to the 

Shannon Limit [4]. In 2003 LDPC code becomes the ECC in 

the Digital Video Broadcasting (DVB) standard and is also the 

prevailing competition in the 4
th
 generation of mobile 

communication system. 

LDPC codes are defined by a sparse parity-check matrix. The 

belief propagation algorithm is a powerful iterative algorithm 

for decoding the LDPC codes [1]-[3]. During decoding, the 

probability of each bit of a transmitted codeword being 1 is 

computed and sent between bit-nodes (representing the 

codeword bits) and check-nodes (representing the parity 

constraints). The time complexity of this algorithm increases 

linearly with the size of parity- check matrix.  

Several parallel methods for decoding LDPC codes have 

been study in recent years [5]-[7]. A parallel architecture for 

decoding LDPC codes was studied by C. Howland and A. 

Blaiiksby. In their paper, a prototype soft decision decoder was 

implemented based on a 1024 bit, rate-1/2 LDPC code [5]. 

Shimizu et al. implemented a parallel LDPC decoder on an 

FPGA and simulated its decoding performance [6]. Daesun et al. 

presented an efficient highly-parallel decoder architecture using 

partially overlapped decoding scheme for quasi-cyclic (QC) 

LDPC codes, which leads to reduction in hardware 

complexity and power consumption [7]. However, most of 

these parallel decoding methods designed at the hardware 

level, thus decoding different codes may require complete 

changes of hardware architectures. As one of high 

performance computing platforms, the graphics processor 

Unit (GPU) offers highly parallel computation, very high 

memory bandwidth, and a flexible programmable 

environment. Thus, we can use GPUs to design a parallel 

decoder for any LDPC code efficiently. 

In just a few years, GPUs have evolved into flexible 

platforms for general computing [9]. Initially, GPUs were 

programmed by low-level languages [10] which restricted 

its application as computing workhorses. The release of Cg, 

a high-level programming language for GPU, facilitated the 

application of GPU for a general purpose computation [11]. 

However, Cg is not user-friendly enough, because it 

requested programmers must have fundamental knowledge 

on computer graphics for using this high-level programming 

language. Until recently, NVIDIA releases the Compute 

Unified Device Architecture (CUDA) [9], programmers can 

write codes for both CPU and GPU in a similar way by 

using the instruction set of CUDA [12]. 

In this paper, we propose a parallel belief propagation 

algorithm for decoding LDPC Codes by using NVIDIA 

CUDA programming model. We show how the parallelism 

naturally appeared during message-passing between 

bit-nodes and check-nodes can be exploited using the 

CUDA model. A significant increase of performance is 

observed when the dimension of parity-check matrix is 

reasonably large. 

This paper is organized as follows. Section 2 presents the 

basic concept of LDPC codes. In Section 3, the classic 

belief propagation algorithm for LDPC codes is reviewed. 

Section 4 describes the parallel belief propagation algorithm 

based on CUDA. Finally, section 5 and 6 present the 

performance results and concluding remarks. 



2. LOW DENSITY PARITY CHECK CODES 

  A LDPC codes can be defined by an NM ×  sparse 

parity-check matrix H , where M  and  N  represent the 

numbers of check-nodes and bit-nodes respectively. H  is 

sparse in the sense that the numbers of 1’s in each row and in 

each column must far less than the numbers of rows and 

columns, respectively. Any codeword of a LDPC code 

( )NxxxX ...,, 21=  must satisfy (1). 

A Tanner graph as shown in Fig. 1 is an intuitive way to 

represent a LDPC code. A bit node j , corresponding to 

column j  in H  is connected to a check node ic , 

corresponding to row i  in H , if 1),( =jiH .  

0=⋅ TXH                      (1) 

3. THE BELIEF PROPAGATION ALGORITHM 

As a subclass of message passing algorithms, a belief 

propagation (BP) algorithm for decoding LDPC codes was first 

presented in Gallager’s work [2]. The essence of the BP 

algorithm is that the probabilities of bit nodes being 1 are 

exchanged between connected check nodes and bit nodes 

during each iteration cycle.  The BP algorithm can be 

summarized as follows [13] and is shown in Fig. 1. 

1. Denote jy  as the received bit at bit node j . A bit node 

j  computes and sends the prior probabilities (beliefs) of jx  

to be 1 ( )1(jiq ) and 0 ( )0(jiq ) according to the observed jy .   

2. A check node i  computes the probabilities of jx  to be 

1 ( ( )1ijr ) and 0 ( ( )0ijr ) according to (2) and (3): 
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These probabilities are then forwarded to the bit node j . 

3. The probabilities ( )0jiq  and ( )1jiq  of bit node j  are 

updated according to the follows, 
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Fig. 1. Graphical representation for LDPC code and probability 

propagation. 
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where jiK  are constants to ensure that 

( ) ( ) 110 =+ jiji qq . 

Finally, a new estimation jx̂  of bit node j  are 

updated by using (6). 
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where ( )bQ j  are defined as follows 
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where jK  are constants to ensure that 

( ) ( ) 110 =+ jj QQ . 

If the current estimate of the codeword 

{ }NxxxX ˆ...ˆ,ˆˆ
21=  satisfies (1), the algorithm stops and 

outputs the estimated codeword X̂ . Otherwise, go to step 

2 unless the maximum number of iterations is reached. 

The algorithm described above can be optimized by using 

log-domain to replace multiplications by additions. 

4. CUDA IMPLEMENT OF PARALLEL BELIEF PROPAGATION 

ALGORITHM 

4.1 General Framework of CUDA 

CUDA is a new hardware and software architecture for 

parallel computing on GPU, which serves as a general 



computing device bypassing the need of direct access to 

low-level graphics API. When programmed through CUDA, the 

GPU is viewed as a computing device capable of executing a 

very high number of threads in parallel. It operates as a 

coprocessor to the main CPU (host), which means data-parallel, 

compute-intensive portions of applications running on the host 

are off-loaded onto the GPU (device). Both the host and device 

maintain their own DRAM, referred to as host-memory and 

device memory, respectively. One can copy data from host to 

device and vice versa through optimized API calls that utilize the 

device’s high-performance direct memory access engines [9]. 

The batch of threads that executes a kernel is organized as a 

grid of thread blocks as illustrated in Fig. 2. A batch of threads 

can cooperate by sharing data through the fast shared memory 

( K16 ) and synchronizing executions efficiently. Each thread is 

identified by its thread ID in each block, and each block is 

identified by its block ID in each grid. The thread ID is 

arranged sequentially. For example, the thread ID of a thread 

with index ).,.,.( ztdytdxtd  in a three dimensional block of 

size ),,( zyx DDD  is )...( yxx DzDtdyDtdxtd ++ . 

Similarly, for a two-dimensional block of size ),( yx DD , the 

block ID of a block of index ),,.( ybkxbk  is 

),.( xyDbkxbk +  [9]. 

A grid of thread blocks is executed on device by scheduling 

blocks for execution on the multiprocessors. The number of 

blocks that each multiprocessor can process in one batch 

depends on the property of the device [9]. 

Device memory can be sorted as read-write per-thread registers, 

read-write per-thread local memory, read-write per-block shared 

memory, read-write per-grid global memory, read-only per-grid 

constant memory and read-only per-grid texture memory. Since 

the shared memory is embedded on the multiprocessor, it 

provides a very fast read and write access for threads. 

4.2 Parallel decoding on CUDA 

In our CUDA implementation of the BP algorithm, a thread is 

assigned to either a bit node or a check node. The workflow of 

the algorithm is illustrated in Fig. 4 and is summarized as 

follows: 

1. Copy the data required for GPU computation from host 

memory in CPU to global memory in GPU, so that all threads 

can access the data in the global memory. These data include a 

structure array S containing probabilities ( )1jiq  and ( )1ijr , 

two mapping arrays indicating the positions where bit node 

j  and check node i can access ( )1jiq  and ( )1ijr  in 

structure array S, and one array for storing the codeword.  

 

Fig. 2. Thread batching: the host issues a succession of kernel invocations 

to the device. Each kernel is executed as a batch of threads organized as a 

grid of thread blocks [9]. 

2. Initialize probabilities ( )bq ji  in parallel using GPU. 

The algorithm initializes the probabilities according to the 

order as shown in Fig. 3 (b).  Each thread is assigned to a 

bit node j  and calculates all probabilities ( )1jiq  with 

the help of the mapping arrays. For instance, for a binary 

symmetric channel (BSC) with error probability p, the 

probability ( )1jiq  is p−1  if the received jy is 1 and 

( ) pq ji =1 otherwise.  

3. Compute current estimated codeword. Following the 

order as shown in Fig. 3 (b), N  threads are assigned to 

compute the codeword. If the estimated codeword satisfies 

(1), go to step 6. Otherwise, proceed to the step 4. 

4. Compute and exchange bit node and check node 

probabilities 

4.1 Calculate probabilities )(brij  at check nodes in 

the order as shown in Fig. 3(c). A thread is 

responsible for a particular check node i , and 

calculates all respective probabilities )(brij . 

Moreover, the shared memory on device is used to 

accelerate the massive number of multiplications in 

(2). 

4.2 Update the probabilities ( )bq ji  at bit nodes and 

estimate ix̂ using ( )bQ j  as computed in (7) 

and (8). The basic idea is the same as step 4.1 

except each bit node is assigned to one thread. All 

threads run and calculate probabilities ( )bq ji  and 

( )bQ j  simultaneously. 



5. If doesn’t reach the maximum iterations, go to step 3. 

Otherwise, stop. 

6. Output codewords. The decoded codewords are copied 

from the global memory back to the host memory. 

 

Fig. 3. Schematic figures of a computational block. Fig. 3(a) shows the parity 

check matrix of Fig. 1. Fig. 3(b) illustrates the parallel computation of bit node, 

while the parallel computation of check-nodes is shown in Fig. 3(c). In Fig. 3(a) 

and Fig. 3(b), the numbers indicate the position of 1’s in the corresponding 

parity-check matrix. 
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Fig. 4. The workflow for decoding LDPC codes with CUDA, where the kernel 

modules means the program executed on GPU 

5. PERFORMANCE RESULTS 

In this section, we present the performance results of parallel 

BP algorithm for decoding LDPC codes based on CUDA. The 

experiment is performed under an Intel Core Duo 1.6 GHz PC 

with 2 GB 667MHz DDR2 Memory, and a GPU NVIDIA 

8800GT with 512 MB memory installed. The specifications of 

software are CUDA Toolkit 1.1, CUDA SDK 1.1 and CUDA 

Driver 169.21 (for Windows XP). In our simulation, 100 

different codewords are employed to test performances of C++ 

codes on CPU and CUDA codes on GPU in decoding LDPC 

codes. The average iterations used in this paper are defined as 

divide total iterations for decoding all the codes by the 

number of codes. 

Table I and table II show the decoding performance for 

code with different parity check matrices. In Table I and II, 

the sizes of parity check matrix are 40962048×  and 

20481024×  respectively. For each size, the matrices 

with 9, 6 and 3 check nodes per row are used for simulation. 

A significant gain in performance of GPU versus CPU is 

observed. Moreover, for a given parity check matrix in table 

I and II, the decoding times are shorter, when larger block 

sizes are used. 

Fig. 5 shows the speedup GPU vs. CPU for three different 

matrices by using 64 threads per block. In Fig. 5, the 

speedups increase as the size of check matrix increases for a 

given number of nodes per row, while the speedups decrease 

as the number of nodes per row decreases for a given parity 

check matrix. We can also see that GPU using CUDA is 9 

times faster than CPU at the size of 40962048×  with 9 

nodes per row. 

The average running time in this paper is defined as 

( )ANTt ⋅= , where T  is running time of GPU or CPU, 

N  is the number of codes and A  is the average 

iterations. Fig. 6 shows the average running time for four 

different matrices with 6 nodes per row by using 64 threads 

per block. With increase of the matrices size, we can see that 

the increase of running time for GPU is linear with a small 

slope, while the increase for CPU is rapidly. However, as 

shown in Fig. 6, for small code size such as 256 , the 

performance of GPU is almost the same as CPU. The 

explanation for this “low” performance is that the GPU 

needs 400 to 600 clock cycles to read a float number from 

global memory. However, if there are sufficient independent 

arithmetic instructions that can be issued while the GPU is 

waiting for the global memory access, much of this global 

memory latency can be hidden by the thread scheduler. This 

fact also verified that CUDA is more suitable for 

compute-intensive, highly parallel computation [9]. 

6. CONCLUSION 

This paper proposed a parallel BP algorithm for decoding 

LDPC codes based on CUDA. CUDA is a new architecture 

for high-performance computation by using massively 

multi-threaded GPU with high memory bandwidth. For the 

decoding of LDPC codes, CUDA offers a highly parallel 

architecture and significant increase of performance in 

contrast with traditional computation on CPU. With CUDA, 



we do not need specific hardware design knowledge to 

accomplish parallel decoding for LDPC codes. Finally, we 

conclude that GPU based parallel programming is a very 

efficient way for the intensive decoding of LDPC codes. 
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Fig. 5. Speedup GPU versus CPU for three different matrices by using 64 

threads per block. 
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Fig. 6. Average running time for four different matrices with 6 nodes per row 

by using 64 threads per block. 

TABLE I 

DECODING PERFORMANCE FOR CODE WITH PARITY CHECK MATRIX SIZE OF 2048 BY 4096 

GPU running time for 

different block sizes (ms) 

Nodes 

per 

Row 

Number 

of 

Edges 

CPU 

running 

Time (ms) 8 16 32 64 

Average 

Iterations 

9 18432 10002 1517 1444 1138 1113 11.9 

6 12288 3059 621 549 528 518 4.8 

3 6144 1328 467 432 414 415 5.8 

 

TABLE II.  

DECODING PERFORMANCE FOR CODE WITH PARITY CHECK MATRIX SIZE OF 1024 BY 2048 

GPU running time for 

different block sizes (ms) 

Nodes 

per 

Row 

Number 

of 

Edges 

CPU 

running 

Time (ms) 8 16 32 64 

Average 

Iterations 

9 9216 3428 966 899 894 693 10.7 

6 6144 764 360 334 321 307 4.6 

3 3072 513 303 285 257 256 5.2 
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